干细胞领域知识发现平台

提升科研信息化水平
支撑研究所科技创新

  融合多源信息    打通数据孤岛
  挖掘知识关联    放大数据价值
  集成知识计算    促进知识发现

知识棱镜

共找到137条结果
排序:

Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. This represents the human CD34+ ChIP-seq portion of this dataset.
Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. This represents the human ChIP-seq portion of this dataset on leukemia cell lines.
Measurement Type: Transcription Profiling (RNA-Seq)
Summary: RNA Sequencing of E14.5 mouse cortical neurospheres in response to Fezf2 over-expression. 2 replicates each of GFP-transfected or Fezf2/GFP-transfected E14.5 mouse cortical neurospheres. Paired-end sequencing 101bp.
Measurement Type: Transcription Profiling (RNA-Seq)
Summary: We selected primary human myoblasts as a model system of cell differentiation to investigate whether ordering cells by progress revealed new regulators of the process. We sequenced RNA-Seq libraries from each of several hundred cells taken over a time-course of serum-induced differentiation. Please note that this dataset is a single-cell RNA-Seq data set, and each cell comes from a capture plate. Thus, each well of the plate was scored and flagged with several QC criteria prior to library construction, which are provided as sample characteristics; CONTROL indicates that this library is a off-chip tube control library constructed from RNA of approximately 250 cells and 'DEBRIS' indicates that the well contained visible debris (and may or may not include a cell). Libraries marked DEBRIS thus cannot be confirmed to come from a single cell.
Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: ChIP-seq analyses were performed in MEL cells expressing BirA alone or BirA and FLAG-Biotin tagged BCL11A (XL isoform). BCL11A chromatin occupancy in MEL cell line.
Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: Analysis of genomic occupancy of H3K27me3, H3K27ac, GATA1, TAL1/SCL and GFI1B in primary adult human proerythroblasts by ChIP-seq. We report a computational approach for investigation of chromatin state plasticity. We applied this approach to investigate an ENCODE ChIP-seq dataset profiling the genome-wide distribution of H3K27me3 in 19 human cell lines. We found that high plasticity regions (HPRs) can be divided into two functionally and mechanistically distinct groups, consisting of CpG island proximal and distal regions. We identified cell-type specific regulators correlating with H3K27me3 patterns at distal HPRs in ENCODE cell lines. Furthermore, we applied this approach to investigate mechanisms for poised enhancer establishment in primary human erythroid precursors. We predicted and validated a previously unrecognized role of TAL1 in modulating H3K27me3 patterns through interaction with additional cofactors, such as GFI1B. Our integrative approach provides mechanistic insights into chromatin state plasticity and is broadly applicable to other epigenetic marks.
Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: Cyclin-dependent kinase 7 (CDK7) plays a critical role in the general regulation of RNA polymerase II-mediated transcription. However, the absence of selective CDK7 inhibitors has hindered the ability to investigate the consequences of acute and prolonged inhibition of CDK7 under normal and pathological conditions. Here we present the discovery and characterization of the first covalent CDK7 inhibitor, CDK7-IN-1, that has the unprecedented ability to target a unique cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7 amongst the 20 known CDKs. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-cell acute lymphoblastic leukemia (T-ALL), exhibit 100-fold greater sensitivity to CDK7-IN-1 over other tumor and normal cell lines. Genome-wide expression analysis in Jurkat T-ALL indicates that CDK7-IN-1 disproportionally affects RUNX1 as well as other components of the TAL1 transcriptional network and its targets, downregulating key regulators of transcription and apoptosis critical for the T-ALL state. These oncogenes are encoded by short-lived mRNA transcripts, are associated with super-enhancers, and exhibit a strong dependency on continuous transcription for sustained expression. Therefore, pharmacological modulation of CDK7 kinase activity may define a method for the identification and treatment of tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state. Jurkat, MM1S, Loucy, and HeLa (WT and Dox-inducible CDK7 mutant) cells were treated with various drugs including a covalent inhibitor of CDK7 (CDK7-IN-1), a reversible inhibitor of CDK7 (CDK7-IN-1), Flavopiridol, Actinomycin D, and DMSO controls. Replicates are annotated.
Measurement Type: Transcription Profiling (Microarray)
Summary: Cyclin-dependent kinase 7 (CDK7) plays a critical role in the general regulation of RNA polymerase II-mediated transcription. However, the absence of selective CDK7 inhibitors has hindered the ability to investigate the consequences of acute and prolonged inhibition of CDK7 under normal and pathological conditions. Here we present the discovery and characterization of the first covalent CDK7 inhibitor, CDK7-IN-1, that has the unprecedented ability to target a unique cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7 amongst the 20 known CDKs. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-cell acute lymphoblastic leukemia (T-ALL), exhibit 100-fold greater sensitivity to CDK7-IN-1 over other tumor and normal cell lines. Genome-wide expression analysis in Jurkat T-ALL indicates that CDK7-IN-1 disproportionally affects RUNX1 as well as other components of the TAL1 transcriptional network and its targets, downregulating key regulators of transcription and apoptosis critical for the T-ALL state. These oncogenes are encoded by short-lived mRNA transcripts, are associated with super-enhancers, and exhibit a strong dependency on continuous transcription for sustained expression. Therefore, pharmacological modulation of CDK7 kinase activity may define a method for the identification and treatment of tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state. Jurkat, MM1S, Loucy, and HeLa (WT and Dox-inducible CDK7 mutant) cells were treated with various drugs including a covalent inhibitor of CDK7 (CDK7-IN-1), a reversible inhibitor of CDK7 (CDK7-IN-1), Flavopiridol, Actinomycin D, and DMSO controls. Replicates are annotated.
Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: The progression from stem cell to differentiated neuron is associated with extensive chromatin remodeling that controls gene expression, but the mechanisms that connect chromatin to gene expression are not well defined. Here we show that mutation of ZNF335 causes severe human microcephaly ("small brain"), small somatic size, and neonatal death. Germline Znf335 null mutations are embryonically lethal in mice, whereas RNA-interference studies and postmortem human studies show that Znf335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. Znf335 is a component of a vertebrate-specific, trithorax H3K4 methylation complex, while global ChIP-seq and mRNA expression studies show that Znf335 is a previously unsuspected, direct regulator of REST/NRSF, a master regulator of neural gene expression and neural cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF, and provide the first direct evidence that this pathway regulates human neurogenesis and neuronal differentiation. Examination of Znf335-bound genes with two separate antisera.
Measurement Type: Transcription Factor Binding (ChIP-Seq)
Summary: NKX2-1 ChIP-seq from three lung adenocarcinoma cell lines with amplification of NKX2-1
organism

celltype

assaytype